Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Meat Sci ; 214: 109532, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733667

RESUMO

This study aimed to clarify the effect of electrostatic spraying of lactic acid (LE) and ascorbic acid (AE) on vacuum-packaged beef aged at 10 °C. The physicochemical attributes, flavor profiles, and microbial diversities were evaluated. Beef steaks were electrostatically sprayed twice with 4% LE, 0.5% AE, or a mixture of them (LAE). Afterward, the beef was vacuum-packaged and aged. All treated beef exhibited a decrease in quality and sensory scores over time. At the end of the study period, the total viable count (TVC) and the total volatile basic nitrogen values in the control group (7.34 log CFU/g and 15.52 mg/100 g, respectively) were higher than those in the acid-treated groups. The LAE group exhibited the best color stability and the lowest TVC and Enterobacteriaceae counts after aging. High-throughput sequencing analysis revealed that acid types and electrostatic spray could change the microbiota structure. Leuconostoc was the dominant bacteria in the AE and LAE groups, while Enterococcus became the predominant bacteria in the NLE and LE groups with aging. This indicates that electrostatic spray combined with acid treatment can ensure beef quality and microbiological safety at mild temperatures.

2.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668646

RESUMO

Background. Actinobacillus pleuropneumoniae, a member of the Pasteurellaceae family, is known for its highly infectious nature and is the primary causative agent of infectious pleuropneumonia in pigs. This disease poses a considerable threat to the global pig industry and leads to substantial economic losses due to reduced productivity, increased mortality rates, and the need for extensive veterinary care and treatment. Due to the emergence of multi-drug-resistant strains, Chinese herbal medicine is considered one of the best alternatives to antibiotics due to its unique mechanism of action and other properties. As a type of Chinese herbal medicine, Rhein has the advantages of a wide antibacterial spectrum and is less likely to develop drug resistance, which can perfectly solve the limitations of current antibacterial treatments.Methods. The killing effect of Rhein on A. pleuropneumoniae was detected by fluorescence quantification of differential expression changes of key genes, and scanning electron microscopy was used to observe the changes in A. pleuropneumoniae status after Rhein treatment. Establishing a mouse model to observe the treatment of Rhein after A. pleuropneumoniae infection.Results. Here, in this study, we found that Rhein had a good killing effect on A. pleuropneumoniae and that the MIC was 25 µg ml-1. After 3 h of action, Rhein (4×MIC) completely kills A. pleuropneumoniae and Rhein has good stability. In addition, the treatment with Rhein (1×MIC) significantly reduced the formation of bacterial biofilms. Therapeutic evaluation in a murine model showed that Rhein protects mice from A. pleuropneumoniae and relieves lung inflammation. Quantitative RT-PCR (Quantitative reverse transcription polymerase chain reaction is a molecular biology technique that combines both reverse transcription and polymerase chain reaction methods to quantitatively detect the amount of a specific RNA molecule) results showed that Rhein treatment significantly downregulated the expression of the IL-18 (Interleukin refers to a class of cytokines produced by white blood cells), TNF-α, p65 and p38 genes. Along with the downregulation of genes such as IL-18, it means that Rhein has an inhibitory effect on the expression of these genes, thereby reducing the activation of inflammatory cells and the production of inflammatory mediators. This helps reduce inflammation and protects tissue from further damage.Conclusions. This study reports the activity of Rhein against A. pleuropneumoniae and its mechanism, and reveals the ability of Rhein to treat A. pleuropneumoniae infection in mice, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antraquinonas , Antibacterianos , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Suínos , Modelos Animais de Doenças , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
3.
J Anim Sci Biotechnol ; 15(1): 44, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475886

RESUMO

Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.

4.
Parasite Immunol ; 46(2): e13022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384176

RESUMO

Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Galinhas/parasitologia , Peptídeos Catiônicos Antimicrobianos/genética , Receptores Toll-Like/genética , Coccidiose/parasitologia , Ceco/parasitologia
5.
J Med Microbiol ; 72(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112519

RESUMO

Introduction. Various plasmid-mediated resistance genes have been reported in Glaesserella parasuis, but little is known about their global distribution features, evolution pattern and spread.Gap Statement. The potential mobilization mechanisms of resistance plasmids in G. parasuis have been poorly explored.Aim. The aim of the study was to investigate the prevalence and diversity of plasmid-mediated resistance genes among G. parasuis isolates, and focus on the analysis of the features of the resistance plasmids from G. parasuis.Method. The plasmids tested were sequenced using the Illumina HiSeq platform in conjunction with PCR and inverted PCR. The susceptibility of the host strains was determined by broth microdilution. The transfer of plasmids tested was conducted by electroporation. The sequence data were compared using bioinformatics tools and the data from our laboratory and the National Center for Biotechnology Information (NCBI) database.Results. Nineteen plasmids were identified from our laboratory and these resistance plasmids were functional and transferable. Moreover, we clustered five types of genetic backbones of plasmids from G. parasuis and revealed the global distribution features of the plasmid-mediated resistance genes.Conclusions. This is the first report of the coexistence of tet(H)-bearing type I plasmid and lnu(C)-bearing type II plasmid in one G. parasuis clinical isolate. In addition, this study provides the first view of the global distribution of plasmid-mediated resistance genes and classifies the plasmids in G. parasuis according to their backbone regions.


Assuntos
Haemophilus parasuis , Plasmídeos/genética , Haemophilus parasuis/genética , Sequência de Bases
6.
Front Vet Sci ; 10: 1107608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793382

RESUMO

Introduction: The rapid emergence and widespread spread of multidrug-resistant bacteria is a serious threat to the health of humans and animals. The pharmacokinetic/pharmacodynamic (PK/PD) integration model based on mutant selection window (MSW) theory is an important method to optimize the dosage regimen to prevent the emergence and spread of drug-resistant bacteria. Actinobacillus pleuropneumoniae (AP) is a pathogen that can cause pleuropneumonia in pigs. Methods: We employed an in vitro dynamic infection model (DIM) to study the prevention of drug-resistant mutations of danofloxacin against AP. A peristaltic pump was applied to establish an in vitro DIM to simulate the PK of danofloxacin in plasma, and to study the MSW of danofloxacin against AP. A peristaltic-pump in vitro infection model was established to simulate dynamic changes in the danofloxacin concentration in pig plasma. PK and PD data were obtained. Then, the relationship between PK/PD parameters and antibacterial activity was analyzed by the sigmoid Emax model. Results and discussion: The area under the curve during 24 h/ the minimum concentration that inhibits colony formation by 99% (AUC24h/MIC99) had the best-fitting relationship with antibacterial activity. The AUC24h/MIC99 values for a bacteriostatic effect, bactericidal effect, and eradication effect were 2.68, 33.67, and 71.58 h, respectively. We hope these results can provide valuable guidance when using danofloxacin to treat AP infection.

7.
Vet Microbiol ; 279: 109690, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791616

RESUMO

New emerging diseases, including 'Candidatus Mycoplasma haemobos' ('Ca. M. haemobos') and HoBi-like pestivirus in central China has been a huge challenge for ruminant production. From July to September 2022, an abortion outbreak affected 14 goat farms and 11 cattle farms in this area. To investigate whether the two pathogens are associated with the disease, samples were collected: Group 1 included 55 goat blood samples with foetal tissue samples and ticks on the skin; Group 2 included nine healthy goat blood samples; Group 3 included 36 cow blood samples with foetal tissue samples and ticks on the skin; and Group 4 included seven healthy cow blood samples. Then, these samples were analysed by serology, PCR, sequence analysis, and identification. A total of 339 Rhipicephalus (Boophilus) microplus and 61 Haemaphysalis longicornis ticks were identified in Group 1 and Group 3. By molecular detection, 32 'Ca. M. haemobos'-positive amplicons, and 27 HoBi-like pestivirus-positive amplicons were amplified from goats in Group 1; meanwhile, 20 'Ca. M. haemobos'-positive amplicons, and 18 HoBi-like pestivirus-positive amplicons were amplified from foetuses. Statistical significance (P = 0.002) and association (OR=7.556) between the 'Ca. M. haemobos' PCR results of foetus and goat samples were observed, and statistical significance (P = 0.017) and association (OR=4.271) between the HoBi-like pestivirus PCR results of foetus and goat samples were observed. These significances and associations were also observed in Group 3. In addition, coinfections were detected in Group 1 and Group 3. 'Ca. M. haemobos' was detected in both tick species. Further serological results revealed that the frequency of HoBi-like pestivirus was 20.0 % (11/55) in Group 1 % and 30.6 % (11/36) in Group 3 in central China. No ticks, pathogens, or neutralizing antibodies were observed in Group 2 or Group 4. This is the first molecular evidence of 'Ca. M. haemobos' and HoBi-like pestivirus natural coinfections in goats and cows with abortion in China. HoBi-like pestivirus and 'Ca. M. haemobos' can be transferred from goats/cows to their foetuses.


Assuntos
Doenças dos Bovinos , Coinfecção , Doenças das Cabras , Infecções por Mycoplasma , Mycoplasma , Pestivirus , Rhipicephalus , Gravidez , Feminino , Bovinos , Animais , Cabras , Coinfecção/veterinária , Infecções por Mycoplasma/veterinária , Doenças dos Bovinos/epidemiologia
8.
Probiotics Antimicrob Proteins ; 15(6): 1608-1625, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36626016

RESUMO

Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 µg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.


Assuntos
Peptídeos Antimicrobianos , Staphylococcus aureus , Animais , Camundongos , Abscesso/tratamento farmacológico , Escherichia coli , Bactérias , Salmonella typhimurium , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
9.
Animals (Basel) ; 12(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552382

RESUMO

Restrictions on antibiotics are driving the search for alternative feed additives to promote gastrointestinal health and development in broiler chicken production. Proteins including antimicrobial peptides can potentially be applied as alternatives to antibiotics and are one of the most promising alternatives. We investigated whether the addition of MPX to the diet affects the production performance, immune function and the intestinal flora of the caecal contents of broiler chickens. One hundred one-day-old chickens were randomly divided into two groups: control (basal diet) and MPX (20 mg/kg) added to the basal diet. The results indicated that dietary supplementation with MPX improved the performance and immune organ index, decreased the feed conversion ratio, increased the villus length, maintained the normal intestinal morphology and reduced the IL-6 and LITNF mRNA expression levels of inflammation-related genes. In addition, MPX increased the mRNA expression of the digestive enzymes FABP2 and SLC2A5/GLUT5 and the tight junction proteins ZO-1, Claudin-1, Occludin, JAM-2 and MUC2, maintained the intestinal permeability and regulated the intestinal morphology. Moreover, MPX increased the CAT, HMOX1 and SOD1 mRNA expression levels of the antioxidant genes. Furthermore, a 16S rRNA microflora analysis indicated that the abundance of Lactobacillus and Lactococcus in the cecum was increased after addition of MPX at 14 d and 28 d. This study explored the feasibility of using antimicrobial peptides as novel feed additives for broiler chickens and provides a theoretical basis for their application in livestock.

10.
Food Funct ; 13(21): 11223-11235, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222352

RESUMO

Weaning stress commonly damages the intestinal barrier of mammals, resulting in gut microbiota dysbiosis, intestinal illness, and even severe diarrhea. Probiotics are used as a nutritional strategy to promote the health of humans and animals and the gut microbiota balance. Here Wickerhamomyces anomalus was applied as a probiotic supplement to a weaned piglet model to investigate its impacts on growth performance, antioxidant capacity, inflammation response, and intestinal health. Supplemental 1 g kg-1 108 cfu g-1W. anomalus 13611 significantly decreased the feed conversion ratio (FCR), alleviated diarrhea, improved the apparent total tract digestibility of neutral detergent fiber (NDF) and gross energy (GE), increased the concentration of total antioxidant capacity (T-AOC) and catalase (CAT) in serum, and decreased the concentration of malondialdehyde (MDA) and pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) in serum. Importantly, supplementation of W. anomalus 13611 also improved the gut microbiota, decreasing the relative abundance of Oxalobacteraceae, enriching the relative abundances of Lactobacillaceae and Lactobacillus, and increasing the relative abundances of two species of Lactobacillus (helveticus and delbrueckii). In conclusion, W. anomalus 13611 could effectively promote growth performance and alleviate diarrhea in a model of weaned piglets, which may be related to improved antioxidant activity, anti-inflammatory response, and alteration in the structure of the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Suínos , Desmame , Antioxidantes/metabolismo , Diarreia , Oxirredução , Homeostase , Mamíferos/metabolismo
11.
Theriogenology ; 189: 301-312, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842953

RESUMO

Orchitis accounts for a high proportion of male animal reproductive disorders. Hence, it is urgent to identify drugs for the prevention and treatment of orchitis. Antimicrobial peptides (AMPs) are currently recognized as one of the most promising alternatives to antibiotics. However, the protective effects of AMPs on lipopolysaccharide (LPS)-induced orchitis have not been reported. In this study, we developed an LPS-induced orchitis model in which primary bovine Sertoli cells were used as model cells. MPX was indicated to effectively reduce the inflammatory response of Sertoli cells. MPX attenuated the gene expression of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß by suppressing the MAPK pathway, especially the phosphorylation of p38 and ERK. MPX also decreased the oxidative stress response caused by LPS and upregulated Occludin and Claudin-1 expression, thereby maintaining the integrity of the blood-testis barrier. Moreover, we found that MPX inhibited apoptosis in Sertoli cells. In a mouse model, we found that MPX significantly inhibited the disruptive effects of LPS, reducing seminiferous epithelium damage, vacuolations, hyperplasia, and apoptosis in spermatogenic cells and rescuing spermatogenesis. In addition, the expression of inflammatory factors such as IL-1ß, IL-18, IL-6 and TNF-α was decreased after MPX treatment in the mouse testes. MPX had no effect on other organs in mice, indicating its safety. This study was undertaken to investigate how MPX regulates the inflammatory response in Sertoli cells and provide a reference for the clinical prevention and treatment of male animal orchitis.


Assuntos
Doenças dos Bovinos , Orquite , Doenças dos Roedores , Animais , Peptídeos Antimicrobianos , Barreira Hematotesticular/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Orquite/tratamento farmacológico , Orquite/metabolismo , Orquite/veterinária , Doenças dos Roedores/metabolismo , Células de Sertoli/metabolismo , Testículo , Fator de Necrose Tumoral alfa/metabolismo
12.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684525

RESUMO

This study focused on characterizing the volatile profiles and contributing compounds in pan-fried steaks from different Chinese yellow cattle breeds. The volatile organic compounds (VOCs) of six Chinese yellow cattle breeds (bohai, jiaxian, yiling, wenshan, xinjiang, and pingliang) were analyzed by GC-Q-Orbitrap spectrometry and electronic nose (E-nose). Multivariate statistical analysis was performed to identify the differences in VOCs profiles among breeds. The relationship between odor-active volatiles and sensory evaluation was analyzed by partial least square regression (PLSR) to identify contributing volatiles in pan-fried steaks of Chinese yellow cattle. The results showed that samples were divided into two groups, and 18 VOCs were selected as potential markers for the differentiation of the two groups by GC-Q-Orbitrap combined multivariate statistical analysis. YL and WS were in one group comprising mainly aliphatic compounds, while the rest were in the other group with more cyclic compounds. Steaks from different breeds were better differentiated by GC-Q-Orbitrap in combination with chemometrics than by E-nose. Six highly predictive compounds were selected, including 3-methyl-butanal, benzeneacetaldehyde, 2-ethyl-6-methyl-pyrazine, 2-acetylpyrrole, 2-acetylthiazole, and 2-acetyl-2-thiazoline. Sensory recombination difference and preference testing revealed that the addition of highly predictive compounds induced a perceptible difference to panelists. This study provides valuable data to characterize and discriminate the flavor profiles in pan-fried steaks of Chinese yellow cattle.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Animais , Bovinos , China , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise
13.
Front Vet Sci ; 9: 819921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425831

RESUMO

Staphylococcus aureus is a common pathogen that can cause pneumonia and a variety of skin diseases. Skin injuries have a high risk of colonization by S. aureus, which increases morbidity and mortality. Due to the emergence of multidrug-resistant strains, antimicrobial peptides are considered to be among the best alternatives to antibiotics due to their unique mechanism of action and other characteristics. MPX is an antibacterial peptide extracted from wasp venom that has antibacterial activity against a variety of bacteria. This study revealed that MPX has good bactericidal activity against S. aureus and that its minimum inhibitory concentration (MIC) is 0.08 µM. MPX (4×MIC) can kill 99.9% of bacteria within 1 h, and MPX has good stability. The research on the bactericidal mechanism found that MPX could destroy the membrane integrity, increase the membrane permeability, change the membrane electromotive force, and cause cellular content leakage, resulting in bactericidal activity. Results from a mouse scratch model experiment results show that MPX can inhibit colonization by S. aureus, which reduces the wound size, decreases inflammation, and promotes wound healing. This study reports the activity of MPX against S. aureus and its mechanism and reveals the ability of MPX to treat S. aureus infection in mice, laying the foundation for the development of new drugs for bacterial infections.

14.
Sci Total Environ ; 800: 149596, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426337

RESUMO

For the ruminant animal industry, the emission of nitrogenous substances, such as nitrous oxide (N2O) and ammonia (NH3), not only challenges environmental sustainability but also restricts its development. The metabolism of proteins and amino acids by rumen microorganisms is a key factor affecting nitrogen (N) excretion in ruminant animals. Rumen microorganisms that affect N excretion mainly include three types: proteolytic and peptidolytic bacteria (PPB), ureolytic bacteria (UB), and hyper-ammonia-producing bacteria (HAB). Microbes residing in the rumen, however, are influenced by several complex factors, such as diet, which results in fluctuations in the rumen metabolism of proteins and amino acids and ultimately affects N emission. Combining feed nutrition strategies (including ingredient adjustment and feed additives) and ecological mitigation strategies of N2O and NH3 in industrial practice can reduce the emission of nitrogenous pollutants from the ruminant breeding industry. In this review, the characteristics of the rumen microbial community related to N metabolism in ruminants were used as the metabolic basis. Furthermore, an effective strategy to increase N utilisation efficiency in combination with nutrition and ecology was reviewed to provide an inside-out approach to reduce N emissions from ruminants.


Assuntos
Nitrogênio , Rúmen , Aminoácidos , Ração Animal/análise , Animais , Dieta , Ruminantes
15.
Front Microbiol ; 12: 644887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177825

RESUMO

Escherichia coli can cause intestinal diseases in humans and livestock, destroy the intestinal barrier, exacerbate systemic inflammation, and seriously threaten human health and animal husbandry development. The aim of this study was to investigate whether the antimicrobial peptide mastoparan X (MPX) was effective against E. coli infection. BALB/c mice infected with E. coli by intraperitoneal injection, which represents a sepsis model. In this study, MPX exhibited no toxicity in IPEC-J2 cells and notably suppressed the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) released by E. coli. In addition, MPX improved the expression of ZO-1, occludin, and claudin and enhanced the wound healing of IPEC-J2 cells. The therapeutic effect of MPX was evaluated in a murine model, revealing that it protected mice from lethal E. coli infection. Furthermore, MPX increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum. SEM and TEM analyses showed that MPX effectively ameliorated the jejunum damage caused by E. coli and increased the number and length of microvilli. In addition, MPX decreased the expression of IL-2, IL-6, TNF-α, p-p38, and p-p65 in the jejunum and colon. Moreover, MPX increased the expression of ZO-1, occludin, and MUC2 in the jejunum and colon, improved the function of the intestinal barrier, and promoted the absorption of nutrients. This study suggests that MPX is an effective therapeutic agent for E. coli infection and other intestinal diseases, laying the foundation for the development of new drugs for bacterial infections.

16.
J Anim Sci Biotechnol ; 11: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072314

RESUMO

BACKGROUND: MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes, including proliferation, development and apoptosis. Our previous study has showed that miR-101-3p is differentially expressed in dairy goat ovaries compared single with multiple litters. The objective of this research was to explore the potential function and molecular mechanism of miR-101-3p via its target STC1 in goat ovarian growth and development. RESULTS: cDNA libraries were constructed using goat granulosa cells transfected with miR-101-3p mimics and negative control by RNA-sequencing. In total, 142 differentially expressed unigenes (DEGs) were detected between two libraries, including 78 down-regulated and 64 up-regulated genes. GO and KEGG enrichment analysis showed the potential impacts of DEGs on ovarian development. STC1 was singled out from DEGs for further research owing to it regulates reproductive-related processes. In vitro, bioinformatics analysis and 3'-UTR assays confirmed that STC1 was a target of miR-101-3p. ELISA was performed to detect the estrogen (E2) and progesterone (P4) levels. CCK8, EdU and flow cytometry assays were performed to detect the proliferation and apoptosis of granulosa cells. Results showed that miR-101-3p regulated STAR, CYP19A1, CYP11A1 and 3ß-HSD steroid hormone synthesis-associated genes by STC1 depletion, thus promoted E2 and P4 secretions. MiR-101-3p also affected the key protein PI3K, PTEN, AKT and mTOR in PI3K-AKT pathway by STC1, thereby suppressing proliferation and promoting apoptosis of granulosa cells. In vivo, the distribution and expression levels of miR-101-3p in mouse ovaries were determined through fluorescence in situ hybridisation (FISH). Immunohistochemistry results showed that STC1 expression was suppressed in mouse ovaries in miR-101-3p-agonist and siRNA-STC1 groups. Small and stunted ovarian fragments, decreased numbers of follicles at diverse stages were observed using Hematoxylin-eosin (HE) staining, thereby showing unusual ovarian development after miR-101-3p overexpression or STC1 depletion. Inhibition of miR-101-3p manifested opposite results. CONCLUSIONS: Taken together, our results demonstrated a regulatory mechanism of miR-101-3p via STC1 in goat granulosa cells, and offered the first in vivo example of miR-101-3p and STC1 functions required for ovarian development.

17.
Vet Microbiol ; 243: 108634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273013

RESUMO

Actinobacillus pleuropneumoniae is the causative agent of highly contagious and fatal respiratory infections, causing substantial economic losses to the global pig industry. Due to increased antibiotic resistance, there is an urgent need to find new antibiotic alternatives for treating A. pleuropneumoniae infections. MPX is obtained from wasp venom and has a killing effect on various bacteria. This study found that MPX had a good killing effect on A. pleuropneumoniae and that the minimum inhibitory concentration (MIC) was 16 µg/mL. The bacterial density of A. pleuropneumoniae decreased 1000 times after MPX (1 × MIC) treatment for 1 h, and the antibacterial activity was not affected by pH or temperature. Fluorescence microscopy showed that MPX (1 × MIC) destroyed the bacterial cell membrane after treatment for 0.5 h, increasing membrane permeability and releasing bacterial proteins and Ca2+, Na+ and other cations. In addition, MPX (1 × MIC) treatment significantly reduced the formation of bacterial biofilms. Quantitative RT-PCR results showed that MPX treatment significantly upregulated the expression of the PurC virulence gene and downregulated that of ApxI, ApxII, and Apa1. In addition, the Sap A gene was found to play an important role in the tolerance of A. pleuropneumoniae to antimicrobial peptides. Therapeutic evaluation in a murine model showed that MPX protects mice from a lethal dose of A. pleuropneumoniae and relieves lung inflammation. This study reports the use of MPX to treat A. pleuropneumonia infections, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus/tratamento farmacológico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/patogenicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Peptídeo Sintases/genética , Suínos , Doenças dos Suínos/microbiologia , Virulência/efeitos dos fármacos
18.
Anim Biotechnol ; 31(2): 142-147, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30717637

RESUMO

Perilipin 2 (PLIN2) is a cytosolic protein that regulates intracellular lipid storage and mobilization. However, research reports of the relationship between PLIN2 gene and growth traits in cattle are rare. Here, five novel single nucleotide polymorphisms (SNPs)(g.3036G > C, g.3964C > T, g.6458G > T, g.6555C > T and g.8231G > A)were identified within the bovine PLIN2 gene using DNA sequencing and PCR-SSCP methods in 820 individuals from four Chinese indigenous bovine breeds. Overall, five common haplotypes were identified based on the 5 SNPs, with the most common haplotypes (GCGCG) occurring at a frequency of 69.0%. In addition, The 5 novel SNPs were associated with growth traits at 6, 12, 18 and 24 months in Nanyang population, and significant associations were found in body weight and heart girth. These results suggest that PLIN2 possibly is a strong candidate gene marker for body weight in cattle breeding program.


Assuntos
Bovinos/genética , Perilipina-2/metabolismo , Animais , Bovinos/crescimento & desenvolvimento , Feminino , Haplótipos , Perilipina-2/genética , Polimorfismo de Nucleotídeo Único
19.
Anim Biotechnol ; 31(5): 440-446, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31104559

RESUMO

Copy number variations (CNVs) have been identified as another important structural variation of genome. In recent years, a large amount of CNVRs have been identified in humans and animals. However, association and dosage effects studies of CNVs are very limited. Apolipoprotein L3 (APOL3) gene plays a central role in modulating gene transcription and is located within a CNVR that encompasses quantitative trait locis (QTLs) for economic traits like meat quality. Herein, we analyzed the CNV polymorphism of APOL3 in 421 individuals from five distinct cattle breeds, and then correlated their genotypes with growth traits. Association analysis revealed that the APOL3 CNV was significantly associated with hip height and cannon circumference of Xianan (XN) cattle (P < .01), and visibly associated with body slanting length and hucklebone width of Pinan (PN) cattle (P < .05). Overall, the data provide evidence for the functional role of APOL3 CNV and a basis for future applications in cattle breeding.


Assuntos
Apolipoproteínas L/genética , Tamanho Corporal/genética , Bovinos/genética , Variações do Número de Cópias de DNA/genética , Animais , Cruzamento , Bovinos/crescimento & desenvolvimento , Locos de Características Quantitativas
20.
J Nutr ; 149(9): 1523-1532, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175811

RESUMO

BACKGROUND: It is not clear whether dietary grape seed proanthocyanidin (GSP) affects mammalian lipid metabolism via the gut microbiota. OBJECTIVE: The aim of this study was to evaluate the contribution of the gut microbiota to the effect of dietary GSP. METHODS: This study was divided into 3 separate experiments using Duroc × Landrace × Yorkshire pigs (50% male) weaned at day 28 and then fed the same basal diet (NC). In Experiment 1, 90 pigs were fed NC or NC with 250 mg GSP/kg (GSP) or 400 mg betaine/kg [positive control (PC)] for 28 d. In Experiment 2, 30 pigs were fed NC, GSP, or GSP with antibiotics (GSP + Abx) diets for 14 d. In Experiment 3, pigs were fed NC, NC plus 1 g sodium propionate/kg (SP), or NC plus 1 g sodium butyrate/kg (SB) diet for 14 d. Serum biochemical indexes, SCFA concentrations, and microbial composition were determined. RESULTS: In Experiment 1, compared with the GSP group, visceral adipocyte area was higher in the NC (28.6%) and PC (18.2%) groups (P ≤ 0.05). Colonic propionate and butyrate concentrations were 30.2% and 3.6% higher in the GSP group than in the NC group, respectively (P ≤ 0.05). In Experiment 2, compared with the GSP group, the NC group had a 108% higher Firmicutes to Bacteroidetes ratio and had 50.4%, 61.2%, and 82.3% lower abundance of Akkermansia, Alistipes, and Bacteroides, respectively (P ≤ 0.05); antibiotics removed these effects of GSP. In Experiment 3, serum peptide YY was 19.5% higher in the SP group than in the NC group (P ≤ 0.05), and it did not differ between the SB and NC groups (P > 0.05). CONCLUSIONS: GSP affected lipid metabolism in weaned pigs, which is associated with changed gut microbiota and enhanced microbial propionate production. These findings provide potential mechanisms for GSP intake to improve lipid metabolism.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proantocianidinas/farmacologia , Propionatos/metabolismo , Animais , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Suínos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA